
Draft: Precompiling C++ for Garbage Collection

Daniel R. Edelson∗

INRIA Project SOR

Rocquencourt, BP 105

78153 Le Chesnay Cedex

France

edelson@sor.inria.fr

26 March 1992

Abstract

Our research is concerned with compiler-independent,
efficient and convenient, garbage collection for C++.
Most collectors proposed for C++ have either been
implemented in a library, or in a compiler. As an
intermediate step between those two, this paper pro-
poses using precompilation techniques to augment a
C++ source program with code to allow type-accurate
garbage collection. In this way, the garbage collector
can be more portable and distributable than a col-
lector within a compiler, while simultaneously more
convenient (i.e., more practical) than a type-accurate
collector that is implemented entirely within a library.
The collector that is under development is based

on precompiler-generated smart pointers as a replace-
ment for raw pointers in the C++ program. The pre-
compiler emits the smart pointer definitions, and the
user is required to utilize them in place of raw point-
ers. These smart pointers supply functionality that
allows the collector to locate all of the roots in the
program. The precompiler also generates code that
allows the collector to locate internal pointers within
objects. This paper describes the architecture of the
system, whose first implementation as a simple mark-
and-sweep collector is underway. The paper also de-
scribes how the collector may eventually be extended
with generations.

Keywords

C++, garbage collection, compilers, precompilers,
smart pointers, mark-and-sweep, memory manage-
ment

∗Author’s other affiliation: Computer and Information Sci-
ence, University of California, Santa Cruz, CA 95064, USA,
daniel@cse.ucsc.edu

Copyright (C) 1992 by Daniel R. Edelson, for submission to

the 1992 Intl. Workshop on Memory Management.

1 Introduction

C++ is nearly alone among modern object-oriented
programming languages in not providing garbage col-
lection. The lack of GC decreases productivity and
increases memory management errors. This situation
persists principally because the common ways of im-
plementing GC are deemed inappropriate for C++. In
particular, tagged pointers are unacceptable because
of the impact they have on the efficiency of integer
arithmetic, and because the cost is not localized.
In spite of the difficulty, an enormous amount of

work has been and continues to be done in attempting
to provide garbage collection in C++. The proposals
span the entire spectrum of techniques including (not
exhaustively):

• concurrent atomic garbage collection implemented
in the cfront C++ compiler [Det90],

• library-based object-management including refer-
ence counting and mark-and-sweep [Ken91],

• library-basedmostly copying generational garbage
collection from ambiguous roots [Bar89],

• library-based reference counting through smart

pointers1 [Mae92],

• library-based mark-and-sweep garbage collection
using smart-pointers [Ede92a]

• compiler-based garbage collection using smart
pointers [Gin91],

• library-based mark-and-sweep or copying collec-
tion using macros [Fer91], and

• library-based conservative generational garbage
collection [BW88, DWH+80].

1Smart pointers [Str91, Str87, Ede] are discussed later in this
paper.

1



The vast number of proposals, without the widespread
acceptance of any one, reflects how hard the problem
is.
The goal of our research is to make type-accurate

garbage collection available to the C++ community.
This ideal imposes strong restrictions on the collector.
Given the speed with which C++ compiler technology
and the C++ language definition are advancing, any
particular version of any compiler quickly becomes ob-
solete. In order to be carried along with the evolution
of the state-of-the-art, and to be usable by anybody
regardless of what compiler they choose, the collector
must not be implemented in the compiler.
In the past, we have proposed implementing GC

strictly in application-code. It would be something
like “GC implemented in a library.” The problem with
this approach was that it required too much effort from
the user. They had to first customize/instantiate the
library (a substantial piece of work), and then follow
its rules. Overall, this was a tedious and error prone
process.
To solve our goal of compiler-independence, while

keeping the associated complexity to the user to a
minimum, we are now proposing precompiling C++

programs to augment them for garbage collection. In
essence, the precompiler performs the necessary cus-
tomization on the C++ program every time it gets
compiled. The user still needs to cooperate with the
collector, but the number of things to remember (and
thus the likelihood of errors) is greatly reduced.
In this paper we discuss our collector architecture

and related techniques for supplying garbage collec-
tion at the C++ source code level. Then, we describe
the transformations that augment a C++ program
with the necessary code for it to utilize garbage col-
lection. The remainder of the paper is organized as
follows: Section 2 discusses related work in garbage
collection and memory management for C++. Section
3 provides an overview of the major techniques that
we utilize to implement garbage collection. Section 4
describes the transformations that the proposed pre-
compiler carrys-out to augmented a program for GC.
Finally, section 5 concludes the paper.

2 Related Work

There is a significant body of related work, in the gen-
eral field of GC, in C++ software tools, and specifi-
cally in collectors for C++.

2.1 Conservative GC

Conservative garbage collection is a technique in which
the collector does not have access to type information
so it assumes that anything that might be a pointer
actually is a pointer [BDS91, BW88]. For example,

upon examining a quantity that the program inter-
prets as an integer (in a register, perhaps), but whose
value is such that it also could be a pointer, the col-
lector would assume the value to be a pointer. This
is a useful technique for accomplishing garbage collec-
tion in programming languages that don’t use tagged
pointers, and in the absence of compiler support.

Boehm, Demers, et al. describe conservative, gener-
ational, parallel mark-and-sweep garbage collection
[BDS91, BW88, DWH+80] for languages such as
C. Russo has adapted these techniques for use in
an object-oriented operating system written in C++

[Rus91a, Rus91b]. Since they are fully conservative,
during a collection these collectors must examine ev-
ery word of the stack, of global data, and of every
marked object. In addition, Boehm discusses compiler
changes to preclude optimizations that would cause a
conservative garbage collector to reclaim data that is
actually accessible [Boe91].

Conservative collectors sometimes retain more gar-
bage than type-accurate collectors because conserva-
tive collectors interpret non-pointer data as point-
ers. Often, the amount of retained garbage is small,
and conservative collection succeeds quite well. Other
times, conservative techniques are not satisfactory.
For example, Wentworth has found that conservative
garbage collection performs poorly in densely popu-
lated address spaces [Wen90, Wen88]. Russo, in us-
ing a conservative collector to reclaim dynamic storage
used by an object-oriented operating system, has also
found that inconveniently large amounts of garbage
escape collection [Rus91a]. Lastly, we have tested con-
servative garbage collection with a CAD software tool
called ITEM [Kar89, Ede92b, Ede92a]. This appli-
cation creates large data structures that are strongly
connected when they become garbage. A single false
pointer into the data structure keeps the entire mass
of data from being reclaimed. Thus, our brief efforts
with conservative collection in this application proved
unsuccessful.

As these examples illustrate, conservative collection
is a very useful technique, but it is not a panacea.
Since it has its bad cases, it is worthwhile to investi-
gate type-accurate garbage collection.

2.2 Partially Conservative

Bartlett has written the Mostly Copying Collector, a
generational garbage collector for Scheme and C++

that uses both conservative and copying techniques
[Bar89, Bar88]. This collector divides the heap into
logical pages, each of which has a space-identifier.
During a collection an object can be promoted from
from-space to to-space in one of two ways: it can be
physically copied to a to-space page, or the space-
identifier of its present page can be advanced.

2



Bartlett’s collector conservatively scans the stack
and global data seeking pointers. Any word the col-
lector interprets as a pointer (a root) may in fact be
either a pointer or some other quantity. Objects ref-
erenced by such roots must not be moved because,
as the roots are not definitely known to be point-
ers, the roots can not be modified. Such objects
are promoted by having the space identifiers of their
pages advanced. Then, the root-referenced objects are
(type-accurately) scanned with the help of information
provided by the application programmer; the objects
they reference are compactly copied to the new space.
This collector works with non-polymorphic C++ data
structures, and requires that the programmer make a
few declarations to enable the collector to locate the
internal pointers within collected objects.

Detlefs generalizes Bartlett’s collector in two ways
[Det90]. Bartlett’s collector contains two restrictions:

1. Internal pointers must be located at the beginning
of objects, and

2. heap-allocated objects may not contain “unsure”
pointers.2

Detlefs’ relaxes these by maintaining type-specific map
information in a header in front of every object. Dur-
ing a collection the collector interprets the map infor-
mation to locate internal pointers. The header can
represent information about both sure pointers and
unsure pointers. The collector treats sure pointers ac-
curately and unsure pointers conservatively. Detlefs’
collector is concurrent and is implemented in the
cfront C++ compiler.

2.3 Type-Accurate Techniques

Kennedy describes a C++ type hierarchy called OATH
that uses garbage collection [Ken91]. Its collector al-
gorithm uses a combination of reference counting and
mark-and-sweep. In OATH, objects are accessed ex-
clusively through references called accessors. An ac-
cessor implements reference counting on its referent.
Thus, the first reclamation algorithm available for
OATH objects is reference counting. In addition, the
reference counts are used to implement a three-phase
mark-and-sweep algorithm that can collect cyclic data
structures. The three-phase algorithm proceeds as fol-
lows. First, OATH scans the objects to eliminate from
the reference counts all references between objects.
After that, all objects with non-zero reference counts
are root-referenced. The root-referenced objects serve
as the roots for a standard mark-and-sweep collection,
during which the reference counts are restored.

2An unsure pointer is a quantity that is statically typed to
be either a pointer or a non-pointer. For example, in “union {
int i; node ∗ p; }x;” x is an unsure pointer.

In OATH, a method is invoked on an object by in-
voking an identically-named method on an accessor to
the object. The accessor’s method forwards the call
through a private pointer to the object. This requires
that an accessor implement all the same methods as
the object that it references. Kennedy implements
this using preprocessor macros so that the methods
only need to be defined once. The macros cause both
the OATH objects, and their accessors, to be defined
with the given list of methods. While not overly ver-
bose, the programming style that this utilizes is quite
different from the standard C++ style. Additionally,
current compiler technology renders long macros, such
as those required for OATH, quite difficult to debug.
A precompiler would have substantial benefits over a
preprocessor for a system like OATH.

Goldberg describes tag-free garbage collection for
polymorphic statically-typed languages using compile-
time information [Gol91], building on work by Appel
[App89]. Goldberg’s compiler emits functions that
know how to locate the pointers in all possible (nec-
essary) activation records of the program. For exam-
ple, if some function F contains two pointers as local
variables, then another function would be emitted to
mark from those pointers during a collection. The
emitted function would be called once for every ac-
tive invocation of F , on the stack, upon a collection,
to trace or copy the sub-datastructure reachable from
each pointer. Upon a collection, the collector follows
the chain of return addresses up the run-time stack.
As each stack frame is visited, the correct garbage col-
lection function is invoked. A function may have more
than one garbage collection routine because different
variables are live at different points in the function.
Clearly, this collector is very tightly coupled to the
compiler.

Yasugi and Yonezawa discuss user-level garbage col-
lection for the concurrent object-oriented program-
ming language ABCL/1 [YY91]. Their program-
ming language is based on active objects, thus, the
garbage collection requirements for this language are
basically the same as for garbage collection of Ac-
tors [Dic, KWN90]. Their position paper describes
a process very similar to the one proposed in this
paper, namely, translating a source program into
another source program that is augmented for GC.
The programming paradigms for C++ and ABCL/1
[ANS91, Yon90] are quite different; each introduces its
own problems that the collector needs to solve.

Ferreira discusses a C++ library that provides
garbage collection for C++ programs [Fer91]. The li-
brary supplies both incremental mark-and-sweep and
generational copy collection, and supports pointers
to the interiors of objects. The programmer renders
the program suitable for garbage collection be plac-
ing macro definitions at various places in the program.

3


